

ME 6135: Advanced Aerodynamics

Dr. A.B.M. Toufique Hasan

Professor

Department of Mechanical Engineering

Bangladesh University of Engineering & Technology (BUET), Dhaka

Lecture-05

29/10/2024

toufiquehasan.buet.ac.bd toufiquehasan@me.buet.ac.bd

Continuity Equation for steady two-dimensional flows (in differential form):

$$
\nabla \cdot (\rho \vec{V}) = 0 \qquad \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} = 0 \qquad \text{for compressible flow}
$$

$$
\nabla \cdot \vec{V} = 0 \qquad \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \qquad \text{for incompressible flow}
$$

Condition of irrotationality in case of two-dimensional flows: (**curl of velocity =0)**

$$
\text{curl } \vec{\mathbf{V}} = 0 \ (\nabla \times \vec{\mathbf{V}} = 0) \qquad \qquad \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0
$$

Stream function, *ψ*

Stream function, *ψ* **(***x, y, t***)** is a single function by which the two entities of velocity components *u* (*x*, *y*, *t*) and *v* (*x*, *y*, *t*) of a two-dimensional incompressible flow can be defined. Consider continuity equation-

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$

Define *stream function* by the following definition (for incompressible flow) -

$$
u = \frac{\partial \psi}{\partial y}
$$
 and $v = -\frac{\partial \psi}{\partial x}$ $v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$ and $v_{\theta} = -\frac{\partial \psi}{\partial r}$ (*r*, θ coordinate)

This definition automatically satisfy the *continuity equation* as-

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \frac{\partial}{\partial x} \left(\frac{\partial \psi}{\partial y} \right) + \frac{\partial}{\partial y} \left(-\frac{\partial \psi}{\partial x} \right) = \frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial^2 \psi}{\partial y \partial x} = 0
$$

Thus, **stream function** is a single function which **satisfy** the first governing equation in fluid dynamics i.e. the **continuity equation**.

Stream function, *ψ*

Continuity equation for two-dimensional compressible flow -

$$
\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0
$$

Define *stream function* by the following definition (for compressible flow) -

$$
u \equiv \frac{1}{\rho} \frac{\partial \psi}{\partial y} \quad \text{and} \quad v \equiv -\frac{1}{\rho} \frac{\partial \psi}{\partial x}
$$

$$
v_r \equiv \frac{1}{\rho} \frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad \text{and} \quad v_{\theta} \equiv -\frac{1}{\rho} \frac{\partial \psi}{\partial r} (r, \theta \text{coordinate})
$$

This definition automatically satisfy the *continuity equation* as-

$$
\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = \frac{\partial}{\partial x} \left(\rho \times \frac{1}{\rho} \frac{\partial \psi}{\partial y} \right) + \frac{\partial}{\partial y} \left(-\rho \times \frac{1}{\rho} \frac{\partial \psi}{\partial x} \right) = \frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial^2 \psi}{\partial y \partial x} = 0
$$

Thus, **stream function** is a single function which **satisfy** the first governing equation in fluid dynamics i.e. the **continuity equation**.

Velocity Potential, *φ*

Velocity Potential, *Φ* **(***x, y, t***)** is another function by which the two entities of velocity components u (x, y, t) and v (x, y, t) of a two-dimensional **irrotational** incompressible flow can be defined. Consider the **condition of irrotationality**

$$
\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0
$$

Define *velocity potential* by the following definition-

$$
u = \frac{\partial \phi}{\partial x}
$$
 and $v = \frac{\partial \phi}{\partial y}$ $v_r = \frac{\partial \phi}{\partial r}$ and $v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$ (*r*, θ coordinate)

This definition automatically satisfy the *condition of irrotationality* as-

$$
\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = \frac{\partial}{\partial x} \left(\frac{\partial \phi}{\partial y} \right) - \frac{\partial}{\partial y} \left(\frac{\partial \phi}{\partial x} \right) = \frac{\partial^2 \phi}{\partial x \partial y} - \frac{\partial^2 \phi}{\partial y \partial x} = 0
$$

Thus, **velocity potential** is a function which **satisfy the** *condition of irrotationality* .

Relation between φ and ψ

It can be seen that-

Streamlines and equipotential lines are mutually perpendicular.

Laplace Equation

Consider 2D irrotational, incompressible flow: the velocity components can be defined in terms of both the stream function and velocity potential-

$$
u = \frac{\partial \psi}{\partial y} \; ; \; v = -\frac{\partial \psi}{\partial x}
$$

$$
u = \frac{\partial \phi}{\partial x} \; ; \; v = \frac{\partial \phi}{\partial y}
$$

Now use the expression of **stream function in the condition of irrotationality**:

$$
\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0
$$
\n
$$
\Rightarrow \frac{\partial}{\partial x} \left(-\frac{\partial \psi}{\partial x} \right) - \frac{\partial}{\partial y} \left(\frac{\partial \psi}{\partial y} \right) = 0
$$
\n
$$
\Rightarrow -\frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi}{\partial y^2} = 0
$$
\n
$$
\Rightarrow \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0
$$
\n
$$
\Rightarrow \nabla^2 \psi = 0
$$

Laplace Equation

Similarly, use the expression of **velocity potential in the continuity equation**:

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$
\n
$$
\Rightarrow \frac{\partial}{\partial x} \left(\frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial \phi}{\partial y} \right) = 0
$$
\n
$$
\Rightarrow \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0
$$
\n
$$
\Rightarrow \nabla^2 \phi = 0
$$
\n
$$
\nabla^2 \psi = 0
$$
\n
$$
\nabla^2 \phi = 0
$$

Ψ **and** *Φ* **both satisfy the Laplace equation**

The equations of stream function and velocity potential are in the forms of Laplace's equation- an equation that arise in many areas of physical sciences and engineering.

The functions *ψ* and *Φ* that satisfy the **Laplace's equation** represents a possible two-dimensional, incompressible, inviscid, irrotational flow field i.e. the **Potential flow**.

Consider a flow field given by

$$
\psi = 3(x^2 - y^2)
$$

Show that the flow is irrotational. Determine the velocity potential for this flow.

Solution:

 $(6-6) = 0$ 2^{\sim} $1 \qquad \qquad \blacksquare$ $(6x)$ $\partial(6y)$ 2 ∂x ∂y $1/ \partial (6x) \quad \partial (6y)$ $2\left\langle \partial x \partial y \right\rangle$ $1 \langle \partial v \partial u \rangle$ angular velocity, $\omega_z = \frac{1}{2}$ $\Rightarrow \omega_z = -(6-6) = 0$ \int \bigcup $\frac{1}{2x} - \frac{1}{2y}$ $\bigcirc x$ ∂y $\int \partial (6x) \quad \partial (6x)$ ∂y) $\left(\frac{6x}{\partial x} - \frac{\partial (6y)}{\partial y}\right)$ $\partial(6x) \quad \partial(6y)$ $\Rightarrow \omega_z = \frac{1}{2} \left(\frac{\partial x}{\partial x} - \frac{\partial y}{\partial y} \right)$ \int \bigcup $\frac{1}{2x} - \frac{1}{2y}$ $\begin{pmatrix} \frac{\partial x}{\partial x} & \frac{\partial y}{\partial x} \end{pmatrix}$ $\left(\begin{array}{cc} \partial v & \partial u \end{array}\right)$ ∂y) $\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$ ∂v ∂u $\big)$ $z = \frac{1}{2}$ *y x cy j x*) $C(OV)$ | $\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$ *v CU* l $x - 3y$ $) = -6x$ \mathcal{X} *x x y* – velocity component, $v = -\frac{dy}{2} = -\frac{c}{2}(3x^2 - 3y^2) = -6x$ $x - 3y$ $y = -6y$ *y y x* – velocity component, $u = \frac{\partial \varphi}{\partial y} = \frac{\partial}{\partial y} (3x^2 - 3y^2) = -6y$ ∂x and ∂x ∂ ∂ ∂ ∂ $\overline{\partial x}$ = $-\overline{\partial x}$ (3x - 3y) = -– velocity component, $v = -\frac{\partial \psi}{\partial y} = -\frac{\partial}{\partial z} (3x^2 \partial$ $(2, 3, 3)$ $\overline{\partial y} = \overline{\partial y} (3x - 3y) = -$ – velocity component, $u = \frac{\partial \psi}{\partial x^2} = \frac{\partial^2}{\partial y^2} = 3$ ψ $C_{(2,2,2)}$ ψ 0 $(2, 2, 2, 2)$

So, the flow is irrotational.

Another approach:

2 2 2 \bigcap 2 2 \bigcap 2 2 $\mathcal{U} \psi$ If the flow is irrotational; Laplace equation, $\nabla^2 \psi = 0$
 $\nabla^2 \psi = \frac{\partial^2 \psi}{\partial \psi^2} + \frac{\partial^2 \psi}{\partial \psi^2}$ x^2 *o* ∂y^2 $\partial^2 \psi$ $+\frac{1}{2}$ ∂x^2 ∂y^2 $\psi = \frac{1}{2} + \frac{1}{2}$

Since the flow is irrotational, there must exist a velocity potential for this flow.

Again, from the definition of velocity potential,

$$
x - velocity component, u = \frac{\partial \phi}{\partial x} = -6y
$$

\n
$$
\Rightarrow \phi = \int -6y \, dx + f(y) \qquad ; \quad f(y) \text{ is an arbitrary function of } y
$$

\n
$$
\Rightarrow \phi = -6xy + f(y)
$$

$$
y - velocity component, v = \frac{\partial \phi}{\partial y} = -6x
$$

\n
$$
\Rightarrow \frac{\partial}{\partial y} \left(-6xy + f(y) \right) = -6x
$$

\n
$$
\Rightarrow -6x + \frac{df(y)}{dy} = -6x
$$

\n
$$
\Rightarrow \frac{df(y)}{dy} = 0 \qquad \therefore f = constant
$$

 $y-1$

Since ϕ and ψ are used to determine the velocity components by differentiation,

$$
\phi = -6xy
$$

$$
\psi = 3(x^2 - y^2) \qquad \therefore \ d\psi = 6xdx - 6ydy = 0 \quad \text{at } \psi = C
$$
\n
$$
\Rightarrow \left. \frac{dy}{dx} \right|_{y=C} = \frac{x}{y}
$$

the constant is of no concern; it is usually set to zero. Hence
\n
$$
\boxed{\phi = -6xy}
$$
\n
$$
\left.\begin{aligned}\n\phi &= -6xy \\
\frac{dy}{dx}\right|_{y=c} &= \frac{x}{y} \\
\phi &= -6xy \quad \therefore d\phi = -6xdy - 6ydx = 0 \quad \text{at } \phi = C\n\end{aligned}
$$
\n
$$
\Rightarrow \frac{dy}{dx}\Big|_{\phi = c} = -\frac{y}{x}
$$
\n
$$
\therefore \frac{dy}{dx}\Big|_{\phi = c} = \frac{x}{y} \times -\frac{y}{x} = -1
$$
\nTherefore lines of constant ϕ are orthogonal to lines of constant ψ .
\n
$$
\left.\begin{aligned}\n\phi_{D;A,B,M;\text{ Tourifque Haasin (BUET)} \\
\text{wherefore lines of constant } \phi \text{ are orthogonal to lines of constant } \psi.\n\end{aligned}\right.
$$
\n
$$
\left.\begin{aligned}\n\phi_{D;A,B,M;\text{Tourifque Haasin (BUET)} \\
\text{The series: Advanced Aerodynamics}\n\end{aligned}\right|_{A,B} = \frac{1}{2} \int_{0}^{2\pi} \frac{dy}{dx} \Big|_{\phi = C} = \frac{x}{y} \times \frac{y}{x} = -1
$$
\n
$$
\text{Therefore, LSPM, Tourifque Haasin (BUET)}\n\qquad\n\text{M.S.: Eng. (April 2024)}\n\qquad\n\text{M.S.: Advanced Aerodynamics}\n\end{aligned}
$$

 1 C $\left. \frac{u \lambda}{\phi = C} \right|_{\phi = C}$ y λ . ; —́ × —́ = — × — — = — 1 = $\begin{vmatrix} -C & dX \end{vmatrix}$ $\begin{vmatrix} x & y & x \end{vmatrix}$ *y y x* $x \quad v$ dx y x $dy \vert x \vert y$ $dx|_{x,c}$ $dx|$ *dy* $\psi = C$ and $\psi = C$

Therefore lines of constant ϕ **are orthogonal to lines of constant** ψ **.**

The velocity in a flow field is given by

$$
\vec{V} = (x^2y - xy^2) \hat{i} + \left(\frac{y^3}{3} - xy^2\right) \hat{j}
$$

(a)Does a stream function exist? If a stream function exists, what is it? (b)Does a potential function exist? If a potential function exists, what is it?

A velocity field is proposed to be

$$
\vec{V} = \frac{10y}{x^2 + y^2} \hat{i} - \frac{10x}{x^2 + y^2} \hat{j}
$$

(a) Is this a possible incompressible flow?

(b) If so, find the pressure gradient with z-axis vertical. Use $\rho = 1.23$ kg/m³ and consider the fluid is frictionless.

Solution

(a) The differential continuity equation is to be checked to determine if the velocity field is possible or not.

$$
u = \frac{10y}{x^2 + y^2} \qquad \therefore \frac{\partial u}{\partial x} = \frac{-20xy}{(x^2 + y^2)^2}
$$

$$
v = -\frac{10x}{x^2 + y^2} \qquad \therefore \frac{\partial v}{\partial y} = \frac{20xy}{(x^2 + y^2)^2}
$$
Now, $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \frac{-20xy}{(x^2 + y^2)^2} + \frac{20xy}{(x^2 + y^2)^2} = 0$

y $(x + y)$ $(x - y)$

 χ αv $(x + v)$

 ∂x ∂y $(x^2 + y^2)^2$

 $(x^2 + y^2)^2$ $(x^2 + y^2)^2$

 $(x^2 + y^2)^2$ $(x^2 + y^2)^2$ \longrightarrow \bullet

 $(+ \nu^{\circ})^{\sim}$ $(x^{\sim} + \nu^{\sim})^{\sim}$

Since the given velocity field satisfies the continuity equation, thus this field represents a possible incompressible flow.

 $+\mathbf{v}^2$ \sim

(b) Consider Euler equation (for frictionless fluid)

x-momentum:
$$
\rho \frac{Du}{Dt} = \rho f_x - \frac{\partial p}{\partial x}
$$

\n
$$
\Rightarrow \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + v \frac{\partial u}{\partial z} \right) = \rho f_x^2 - \frac{\partial p}{\partial x}
$$
; steady 2D
\n
$$
\Rightarrow \rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p}{\partial x}
$$

\n
$$
\Rightarrow \frac{\partial p}{\partial x} = \frac{123x}{(x^2 + y^2)^2}
$$

 $\left(\sqrt{\frac{cu}{\partial z}}\right) = \rho f \left(\frac{ap}{dx} \right)$; steady 2D flow, *z*-axis vertical

$$
y-momentum: \quad \rho \frac{Dv}{Dt} = \rho f_y - \frac{\partial p}{\partial y}
$$
\n
$$
\Rightarrow \rho \left(\frac{\partial y^2}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial z} \right) = \rho f_y \frac{1}{\partial y} \frac{\partial p}{\partial y} \qquad ; \text{ steady 2D}
$$
\n
$$
\Rightarrow \rho \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y}
$$
\n
$$
\Rightarrow \frac{\partial p}{\partial y} = \frac{123y}{(x^2 + y^2)^2}
$$

 $\frac{\partial p}{\partial y}$; steady 2D flow, *z*-axis vertical

z-momentum:
$$
\rho \frac{D\cancel{v}}{Dt} = \rho f_z - \frac{\partial p}{\partial z}
$$
 ; steady?
\n $\Rightarrow 0 = \rho(-g) - \frac{\partial p}{\partial z}$; steady?
\n $\Rightarrow \frac{\partial p}{\partial z} = (1.23)(-9.81) = -12.07$

; steady 2D flow, *z*-axis vertical, $f_z = -g = -9.81 \text{m/s}^2$

So, the pressure gradient:

$$
\nabla p = \frac{\partial p}{\partial x} \hat{i} + \frac{\partial p}{\partial y} \hat{j} + \frac{\partial p}{\partial z} \hat{k}
$$

$$
\nabla p = \frac{123}{(x^2 + y^2)^2} (x\hat{i} + y\hat{j}) - 12.07\hat{k}
$$

Simple problems to be solved-

- 1. Determination of stream function and velocity potential
- 2. Confirmation of possible potential flow etc.

Coordinate systems

To apply the governing equations, a coordinate system: (x,y,z) or (r,θ,z) is to be chosen that best fits the geometry of the flow problem to be solved.

The velocity field can be expressed by :

$$
\begin{array}{|c|}\n\hline\n\vec{V} = u\hat{i} + v\hat{j} + w\hat{k} \\
\hline\n\vec{V} = v_r \hat{i}_r + v_\theta \hat{i}_\theta + v_z \hat{i}_z\n\end{array}
$$
\n(Cartesian (x,y,z))\n(Cylindrical (r, \theta, z))

2D coordinate system

The "vector" or "del" operator has the following two forms depending on coordinate system:

$$
\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}
$$
 (Cartesian (x, y, z))

$$
\nabla = \hat{i} \frac{\partial}{\partial r} + \hat{i} \frac{1}{\partial r} \frac{\partial}{\partial \theta} + \hat{i} \frac{\partial}{\partial z}
$$
 (Cylindrical (r, \theta, z))

Continuity equation for steady inviscid incompressible flows:

 $\nabla \cdot \vec{V} = 0$

 $\nabla \cdot V = 0$ (divergence free velocity field)

For 2D flows:

$$
\nabla \cdot \vec{V} = \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} \right) \cdot \left(u \hat{i} + v \hat{j} \right) = 0
$$

$$
\Rightarrow \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \qquad \text{(Cartesian (x, y))}
$$

y
(r,
$$
\theta
$$
)
(r, θ)
y = r sin θ
 θ = tan⁻¹ $\left(\frac{y}{x}\right)$
(0,0)
x

2D coordinate system

$$
\nabla \cdot \vec{V} = \left(\hat{i}_r \frac{\partial}{\partial r} + \hat{i}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} \right) \cdot \left(v_r \hat{i}_r + v_\theta \hat{i}_\theta \right) = 0
$$

\n
$$
\Rightarrow \frac{1}{r} \left(\frac{\partial (r v_r)}{\partial r} + \frac{\partial v_\theta}{\partial \theta} \right) = 0
$$

\n
$$
\Rightarrow \frac{\partial (r v_r)}{\partial r} + \frac{\partial v_\theta}{\partial \theta} = 0
$$
 (Cylindrical (r, θ))

Stream function, ψ in (r,θ)

For 2D flows in polar coordinate (*r*, *θ*) continuity equation:

$$
\Rightarrow \frac{\partial (rv_r)}{\partial r} + \frac{\partial v_\theta}{\partial \theta} = 0
$$

Define *stream function* by the following definition-

$$
v_r \equiv \frac{1}{r} \frac{\partial \psi}{\partial \theta}
$$
 and
$$
v_{\theta} \equiv -\frac{\partial \psi}{\partial r}
$$

$$
\therefore \frac{\partial (r v_r)}{\partial r} = \frac{\partial}{\partial r} \left(r \frac{1}{r} \frac{\partial \psi}{\partial \theta} \right) = \frac{\partial}{\partial r} \left(\frac{\partial \psi}{\partial \theta} \right) = \frac{\partial^2 \psi}{\partial r \partial \theta}
$$

and
$$
\therefore \frac{\partial v_\theta}{\partial \theta} = \frac{\partial}{\partial \theta} \left(- \frac{\partial \psi}{\partial r} \right) = -\frac{\partial^2 \psi}{\partial r \partial \theta}
$$

Now

2D coordinate system

which **satisfy** the **continuity equation**. 0

Condition of irrotationality for steady inviscid flows:

 $\nabla\!\times\! V=0$ \vert (Curl of velocity field is zero) $\nabla \times \vec{V} = 0$

For 2D flows:

$$
\nabla \times \vec{V} = \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y}\right) \times (u\hat{i} + v\hat{j}) = 0
$$

$$
\Rightarrow \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0
$$
 (Cartesian (x,y))

2D coordinate system

$$
\nabla \times \vec{V} = \left(\hat{i}_r \frac{\partial}{\partial r} + \hat{i}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} \right) \times \left(v_r \hat{i}_r + v_\theta \hat{i}_\theta \right) = 0
$$

\n
$$
\Rightarrow \frac{\partial v_\theta}{\partial r} + \frac{1}{r} \left(v_\theta - \frac{\partial v_r}{\partial \theta} \right) = 0
$$

\n
$$
\Rightarrow \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} - \frac{1}{r} \frac{\partial v_r}{\partial \theta} = 0
$$
 (Cylindrical (r, θ))

 (r,θ))

Potential function, φ in (r,θ)

For 2D flows in polar coordinate (*r*, *θ*) the **condition of irrotationality:**

$$
\Rightarrow \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} - \frac{1}{r} \frac{\partial v_r}{\partial \theta} = 0
$$

Define *potential function* by the following definition-

$$
v_r \equiv \frac{\partial \varphi}{\partial r}
$$
 and
$$
v_{\theta} \equiv \frac{1}{r} \frac{\partial \varphi}{\partial \theta}
$$

2D coordinate system

$$
\therefore \frac{\partial v_r}{\partial \theta} = \frac{\partial}{\partial \theta} \left(\frac{\partial \phi}{\partial r} \right) = \frac{\partial^2 \phi}{\partial r \partial \theta}
$$

and
$$
\frac{\partial v_\theta}{\partial r} = \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \phi}{\partial \theta} \right) = -\frac{\partial \phi}{\partial \theta} \frac{1}{r^2} + \frac{1}{r} \frac{\partial^2 \phi}{\partial r \partial \theta} = -(v_\theta r) \frac{1}{r^2} + \frac{1}{r} \frac{\partial^2 \phi}{\partial r \partial \theta} = -\frac{v_\theta}{r} + \frac{1}{r} \frac{\partial^2 \phi}{\partial r \partial \theta}
$$

Now
$$
\frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} - \frac{1}{r} \frac{\partial v_{r}}{\partial \theta} = \left(-\frac{v_{\theta}}{r} + \frac{1}{r} \frac{\partial^{2} \phi}{\partial r \partial \theta} \right) + \frac{v_{\theta}}{r} - \frac{1}{r} \left(\frac{\partial^{2} \phi}{\partial r \partial \theta} \right) = 0
$$
 which

 \vert =0 which **satisfy** the **condition of irrotationality**

A velocity field is given in polar coordinates for a perfect fluid flow as:

$$
v_r = \left(\frac{\theta^2}{r} - 1\right)
$$
 and $v_\theta = (\theta - 2r)$

Find the stream function for this flow.

Solution:

$$
v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = \left(\frac{\theta^2}{r} - 1\right)
$$

\n
$$
\Rightarrow \frac{\partial \psi}{\partial \theta} = (\theta^2 - r)
$$

\n
$$
\therefore \psi = \frac{\theta^3}{3} - r\theta + f(r)
$$

\n
$$
v_{\theta} = -\frac{\partial \psi}{\partial r} = (\theta - 2r) \text{ (given)}
$$

\n
$$
\Rightarrow -\frac{\partial}{\partial r} \left[\frac{\theta^3}{3} - r\theta + f(r)\right] = (\theta - 2r)
$$

\n
$$
\Rightarrow \theta - \frac{df(r)}{dr} = (\theta - 2r)
$$

\n
$$
\Rightarrow -\frac{df(r)}{dr} = -2r
$$

\n
$$
\therefore f(r) = r^2 + \text{constant}
$$

 $f(r) = r^2 + constant$

$$
\therefore \psi = \frac{\theta^3}{3} - r\theta + r^2 + \text{constant}
$$

A physically possible irrotational flow is:

 $\vec{V} = (2x+1)\hat{i} - (2y)\hat{j}$

Find the velocity potential function for this flow.

Solution:

